

detect and identify

Calcium monitoring with the Mithras LB 940 multimode plate reader

Introduction

 Ca^{2+} is an intracellular messenger in many eukaryotic signal transduction pathways. Most Ca^{2+} -signalling systems have one thing in common: they generate brief pulses of Ca^{2+} , thereby regulating cellular functions.

Intracellular levels of Ca²⁺ are usually kept low, as Ca²⁺ often forms insoluble complexes with phosphorylated and carboxylated compounds. Typically cytosolic Ca²⁺-concentrations are 100 nM. In response to stimuli Ca²⁺ is either released from external medium or internal stores to raise the Ca²⁺-concentration. In the cell membrane the Na⁺/Ca²⁺ exchanger controls Ca²⁺-flux following stimuli like membrane depolarisation or extracellular agonists. Intracellularily, Ca²⁺ is stored in the endoplasmatic reticulum or in the sarcoplasmatic reticulum in muscles, respectively. Ca²⁺-flux is triggered by an expanding group of messengers, like inositol-1,4,5,-trisphosphate (IP₃), cyclic ADP ribose (cADPR), nucleic adenine dinucleotide phosphate (NADP) and sphingosine-1-phosphate. The sarco(endo)plasmatic reticulum Ca²⁺-ATPase pumps cytosolic Ca²⁺ back into the lumenal space.

Most of the released Ca^{2+} is bound to buffers like calbindin D-28, calretinin or parvalbumin which function to fine-tune the Ca^{2+} -signals. Only a small proportion of Ca^{2+} is bound to effector proteins like calmodulin or troponin C. Those effector proteins pass the information from Ca^{2+} on to target proteins, a wide range of enzymes and pumps. Targets of calmodulin may propagate the Ca^{2+} -signal and induce the synthesis and release of neurotransmitters. Alternatively, calmodulin may abrogate the Ca^{2+} -signal by activating the Ca^{2+} -ATPase pump which restores the basal Ca^{2+} -level in the cell.

Figure 1. Ca²⁺-transport: Cytosolic Ca²⁺-concentrations are raised in response to stimuli, which open Ca²⁺-channels in the cell membrane or in membranes of the ER/SR. Ca²⁺ is then bound to different target proteins; thereby modulating its effectors. As high Ca²⁺-concentrations are toxic; Ca²⁺ is removed from the cytosol by Ca²⁺-ATPase pumps.

 Ca^{2+} -signalling plays an important role in a number of physiological processes: For example nerves are triggered by Ca^{2+} -flux through voltage gated Ca^{2+} -channels and this subsequently leads to the release of neurotransmitters. In muscles the abrupt rise in cytosolic Ca^{2+} -levels culminates in contraction. In contrast, the rapid removal of Ca^{2+} into the sarcoplasmatic reticulum results in muscle relaxation. In the visual system Ca^{2+} controls the guanylate cyclase after illumination. In the nucleus Ca^{2+} regulates transcription by activating the calmodulin kinase which phosphorylates, and thereby activates the transcription factor CREB.

Ca²⁺-measurement with Fura-2

The concentration of free Ca^{2+} in intact cells can be monitored by using polycyclic chelators such as Fura-2 or Indo-1. The fluorescence properties of both dyes are markedly changed when Ca^{2+} is bound and thus the direct detection of Ca^{2+} -fluxes in response to specific signal transduction pathways is possible.

Indo-1 is the preferred dye for flow cytometry where it is more practical to use a single laser for excitation (351 – 364 nm spectra of the argon laser) and monitor two emissions. The emission maximum shifts from ~ 475 nm in Ca^{2+} -free medium to ~ 400 nm when the dye is saturated with Ca^{2+} .

Upon binding Ca^{2+} the absorption maximum of Fura-2 shifts from 380 nm to 340 nm, while the emission remains constant at 510 nm (figure 2). These results in an opposite change of fluorescence intensity: an increase at 340 nm and a decrease at 380 nm.

Figure 2. Correlation between fluorescence intensity and Ca^{2+} -concentration: The shift of the absorption maximum of Fura-2 from 380nm to 340 nm (green arrows) depends on the Ca^{2+} -concentration.

Therefore Fura-2 is especially useful for Ca²⁺-measurements regarding the correlation between fluorescence intensity and Ca²⁺-concentration. The fluorescence intensity of a Ca²⁺-loaded cell at 340 nm and an emission at 510 nm is F_{340} . It is determined by the dye concentration (c), the cell size (d) and a constant (K) which summarizes the optical characteristics of the device, and a function of the Ca²⁺-concentration (f[Ca²⁺]). Measuring F_{340} and F_{380} with short intervals, c, d and K are assumed not to change and the relative Ca²⁺-concentration can be calculated by the ratio of both excitation wavelengths:

$$R=F_{340}/F_{380}= f'' ([Ca^{2+}])$$

Both Fura-2 and Indo-1 display high specificity for Ca^{2+} relative to magnesium and the K_dlevels are close to 100 nM (the mammalian basal Ca^{2+} -concentration). As sodium and potassium salts of Fura-2 are cell impermeable these salts are useful as standards to calibrate Ca^{2+} -measurement. For loading of cells the acetomethylesters (AM) of Fura-2 are applicable as they diffuse passively across the cell membranes. Inside the cell they are cleaved by intracellular esterases to yield cell-impermeant fluorescent indicators.

Mithras LB 940

The Mithras LB 940 is a multimode plate reader with a unique optical design (DOPS – Dedicated Optical Path System) to ensure optimized performance for the detection technologies implied. These are luminescence, BRET, fluorescence (top and bottom reading), absorbance, fluorescence polarization and AlphaScreen[™]. In addition accessory options, e.g. reagent injectors, temperature control and cooled PMT detection units are available. Especially the fact that at least one injector is located in the reading position fast reaction kinetics can be monitored.

Figure 3. Mithras LB 940 multimode reader for microplates

Changes in Ca^{2+} -levels can be monitored by fluorescent microscopy, flow cytometry and fluorescent plate readers. The advantage of fluorescent microscopy is that Ca^{2+} -flux in single cells may be observed. The disadvantage however is that this method is very time consuming to yield significant results.

Using flow cytometry a large number of single cells may be monitored, but it only permits kinetic resolution of various cell populations, not a single one. With the Mithras multimode reader Ca²⁺-flux of a distinct cell population is documented directly over time. Injection of stimulators or chelators is possible and the Ca²⁺-concentration is displayed as a kinetic. Preheating of the measurement chamber at 37°C provides the cells with physiological conditions. This is especially important as Ca²⁺-flux can only be measured in viable cells. An additional advantage is that the Mithras LB 940 reads from multiplate formats including 96-well plates. Thus, small cell numbers are applicable and the throughput is high.

Assay protocol

Ca²⁺-flux was analysed in murine B-cells stimulated with IgM to induce the release of Ca²⁺ from internal stores. The ionophore ionomycin was used as a positive control since it depolarizes the membrane by its hydrophobic nature and thereby introduces Ca²⁺ into the cells. Additionally, as the Ca²⁺-specific chelator EGTA binds free Ca²⁺ it can be used as the negative control. For each measurement 1 x 10⁶ murine B-cells per well of a 96-well plate were analysed. Prior to the stimulation cells were loaded with 2,5 μ M Fura-2-AM for 30 minutes at room temperature in the dark. Optional, a standard curve based on a calcium calibration buffer kit (e.g. Molecular Probes) may be generated to determine absolute Ca²⁺-concentrations.

Ca²⁺-flux was determined with the Mithras LB 940 heated to 37°C to provide physiological conditions. To minimize auto-fluorescence the assay was run in black 96 well assay plates. First, basal Ca²⁺-levels were determined by calculating the ratio of the fluorescence intensity at 380 and 340 nm with an emission at 510 nm. Subsequently, 1 µg/ml IgM was injected and again the fluorescence intensity was measured. To determine the maximal Ca²⁺-flux 2 µg/ml ionomycin were injected. Finally, 2 mM EGTA were injected to bind free Ca²⁺ and return to basal Ca²⁺-levels.

Instrument Settings

Fluor. Kinetic	380 nm excitation / 510 nm emission	
	340 nm excitation / 510 nm emission (second measurement)	
	total time 40 sec, counting time 0.5 sec (time resolution)	
	lamp energy 7000	
	temperature 37 °C	
Dispense	Injector 4, 10 µl (IgM), medium speed	
Shake	2 s	
Fluor. Kinetic 2	total time 90 s, time resolution 0.5.s	
Dispense	Injector 3, 10 µl (Ionomycin), medium speed	
Shake	2 s	
Fluor. Kinetic 3	total time 40 s, time resolution 0.5 s	
Dispense	Injector 2, 10 µl (EGTA), medium speed	
Shake	2 s	
Fluor. Kinetic 4	total time 40 s, time resolution 0.5 s	

Excitation Filter Slide			
Unused Filters			
All filters can be dragged from the Unused Filters list to an empty position in the slide, or from one position to an empty one or back to the list.			
Excitation Filter Slide Positions			
5 F380 F340 F485 F355			
Excitation filter slide A			
Add Remove Eject Slide OK Cancel			
Deptions			
Samples Measurement			
Measurement Sequence: Operations: Operation			
Image: Wight of the second			
Image: Second state Image: Second state Image: Second state Counting Time 0.50 Image: Second state Image: Second state Image: Second state Second state Second state Image: Second state Image: Second state Image: Second state Second state Second state Image: Second state Image: Second state Image: Second state Second state Second state Image: Second state Image: Second state Image: Second state Second state Second state			
K Lumin. Kinetic			
S Lumin. Scanning I N igm Excitation Filter F380 ■ R Lumin. Beneated ■ I N igm Excitation Filter F380			
Fluor. Label			
Meas. operation by Well Second Measurement Yes			
□ R Fluor. Repeated Shake Excitation Filter 2 F380 □ K EGTA Emission Filter 2 F510/25			
S Abs. Scanning			
Operation Mode			
Temperature 30 °Celsius			
OK Abbrechen Übernehmen			
Kinetics properties			
Parameters:			
Name: FURA2			
Total Time: 40 (1 - 86400 s)			
Counting Time: 0.5 (0.05 - 600 s)			
Delay: 0 (0 - 600 s)			
Repeats: 27 (1 - 999)			
Lamp Energy: 7000 (0 - 65535)			
Excitation Filter: F380 - Slot A4			
Excitation Aperture: C. Small Normal			
Emission Filter: E510/25 - Slot A3			
Counter position: Top Bottom			
Second Measurement			
Excitation Filter: F380 - Slot A4			
Emission Filter: F510/25 - Slot A3			

Figure 4. Instrument settings

Upper panel: The excitation filters are placed next to each other in order to ensure minimum delay for filter change (upper panel).

Middle panel: Operation sequence shows the individual steps performed in the kinetic measurement. All operations are defined "by well", i.e. all steps are performed completely per individual well before they are executed for the consecutive well.

Lower panel: Kinetic operation window displays the settings for reading times, lamp energy and filter selections.

Results

The kinetic curves of the respective intensities at 340 and 380 nm as well as the ratio can be monitored on line.

Figure 5. Graphic display of kinetic curves: red graph represents excitation at 340 nm, blue graph represents excitation at 380 nm, pink graph represents the ratio.
Upper panel: View of total microplate
Lower panel: Zoomed view of selected wells

For further data evaluation Mikrowin 2000 offers various possibilities which will be discussed later. In addition it is possible to analyse the fluorescence intensities in Microsoft Excel. All individual readings acquired with 340 and 380 nm excitation, i.e. raw data, are exported from Mikrowin 2000 using the RawData Export Driver.

RawData Export Driver, Version 4.07	×		
Output Format Oper Kinetic Layout : Position / Time Add Time Format : hh:mm:ss	ation Mode		
Export Target Format : XLS File Directory : C:\Programme\MikroWin 2000\Transfer Help			
File Export	×		
Active Export Driver			
Export Target Information File Name : 310804-3.xls Directory : C:\Programme\MikroWin 20	Browse 00\Transfer		

Figure 6. Usage of Rawdata Export Driver to transfer all readings into a sread-sheet readable format.

Upper panel: Driver set-up

Lower panel: User dialogue for execution of manual export including driver selection, file name and directory settings.

In Excel the $ratio_{340/380 \text{ nm}}$ of the fluorescence intensities at each time point is calculated. These data are then used to display the relative changes of free Ca²⁺ as a graph.

The exact Ca²⁺-concentration of distinct time points may be determined with a standard curve. To this end CaEGTA buffers with given Ca²⁺-concentrations are measured at 340 nm and 380 nm. These data are plotted as the log of the $[Ca^{2+}]_{free}$ (x-axis) versus the $log\{(R-R_{min})/(R_{max}-R)\}$ (y-axis). The MikroWin2000 software (Parameterdatei XY) calculates the K_d of EGTA, defined as the concentration at which the function reaches the half saturation point.

Figure 7. Standard Curve Ca

With the following formula free Ca^{2+} at distinct time points may be calculated from the corresponding R value. R_{min} is the ratio at zero Ca^{2+} and R_{max} is the ratio at saturating Ca^{2+} . F^{380}_{max} is the fluorescence intensity at 380 nm for zero free Ca^{2+} and F^{380}_{min} is the fluorescence intensity at saturating free Ca^{2+} .

$$[Ca^{2+}]_{free} = K_d \times (R-R_{min})/(R_{max}-R) \times F^{380}_{max}/F^{380}_{min}$$

Conclusion

For measuring Ca²⁺-flux it is important to provide physiological conditions in order to keep the cells viable. For this purpose the Mithras LB 940 is equipped with a temperature control device. Furthermore live kinetic monitoring is possible. With 4 reagent injectors up to four different substances may be injected automatically.

Materials

- 1x10⁶ murine B cells/well
- Tyrode buffer for staining and measuring: 140 mM NaCl, 5 mM HEPES buffer, 10 mM glucose, 0,5 M KCl, 0,12 M MgSO₄, 1 M CaCl₂ and 1% BSA (prepare freshly)
- dye loading: Fura-2-acetomethylester (purchased from Molecular Probes or Sigma)
- IgM, ionomycin, EGTA or other stimulators/chelators
- black 96 well plate (Berthold Technologies, ID No. 23302)
- Mithras LB 940 multimode reader (Berthold Technologies)
- Filters (Berthold Technologies): excitation 340 nm (ID No. 40086) and 380 nm (ID No. 40087) emission: 510 nm (ID No. 40094)
- Optional: Calcium calibration buffer kit and Fura-2 (Molecular Probes)