

Gesellschaft für chemische Materialien spezieller Photoresistsysteme mbH

Materials for Nanoimprint Lithography

Broad Portfolio of Ready-to-use Materials for Thermal & UV Nanoimprint Lithography (NIL)

- Coating of various substrates with excellent film quality (Si, SiO₂, glass, Al, Al₂O₃, plastics)
- Excellent pattern replication fidelity using various mold materials (Si, SiO₂, Ni, OrmoStamp[®])
- Superior mold release properties
- Numerous application areas (pattern transfer using dry etch processes, permanent applications)
- Customized solutions and resist formulations designed for industrial high throughput processes
- Safe solvents specified for industrial requirements
- Guaranteed product quality and processing reproducibilityManufacturing according to ISO 9001 and ISO 14001
 - Made in Germany -

phone

fax

mail

info

micro resist technology GmbH Köpenicker Str. 325 12555 Berlin GERMANY +49 30 64 16 70 100 +49 30 64 16 70 200 sales@microresist.de www.microresist.com

NIL Material Specifications

Product Series	Film Thickness Ready-to-use Solutions (@ 3000 rpm)	Material Specifications (glass transition temperature T _g)	Imprint Condition (Imprint temperature T _i , release temperature T _i)	Ancillaries						
Thermal Nanoimprint Lithography										
mr-I 7000R ¹	100 nm 200 nm 300 nm	Thermoplastic T _g = 55 °C	T _i = 120 - 140 °C T _r = 30 - 50 °C	Thinner ma-T 1050						
mr-l 8000R ¹	100 nm 200 nm 300 nm	Thermoplastic T _g = 105 °C	T _i = 150 - 180 °C T _r = 80 - 100 °C	Thinner ma-T 1050						
mr-l T85	300 nm 1.0 μm 5.0 μm	Thermoplastic T _g = 85 °C	T _i = 130 - 150 °C T _r = 60 - 80 °C	-						
SIPOL	60 nm 100 nm 200 nm	Thermoplastic T _g = 63 °C	T _i = 120 °C T _r = 30 - 50 °C	Transfer layer UL1 Thinner ma-T 1050						
mr-l 9000M	100 nm 200 nm 300 nm 500 nm 1.0 μm	Thermoset T _g = 35 °C (before curing)	T _i = T _r = 90 - 140 °C	Thinner ma-T 1045						
UV Nanoimprint Lit	hography									
mr-UVCur06	240 nm (solvent-free)	UV-curable monomers, indifferent towards atmospheric oxygen	T. T	Adhesion						
mr-UVCur21	100 nm 200 nm 300 nm	UV-curable monomers $(\eta_{25^{\circ}C} = 33 \text{ mPa s after softbake})$	$T_i = T_r = room temperature$ (20 °C) UV exposure dose > 400 mJ cm ⁻² (@ 365 nm)	promoter mr-APS1 Thinner mr-T 1070						
mr-UVCur21SF	1.6 μm (solvent-free)	UV-curable monomers $(\eta_{25^{\circ}C} = 33 \text{ mPa s})$								
Combined Thermal	and UV Nanoim	orint Lithography	1							
mr-NIL 6000E	100 nm 200 nm 300 nm	UV-curable resin T _g = 1 °C (before UV curing)	1. T _i = 65 - 70 °C 2. UV exposure dose 350 mJ cm ⁻² (@ 365 nm) 3. T _r = 65 - 70 °C	Thinner ma-T 1045						
Available on Request										
Special Designs and Customized Formulations	 NIL process condition, imprint and pattern transfer performance depend on the specific material. Resist modifications for alternative coating technologies are provided upon request (e.g. gravure printing). For fundamental NIL investigations our PMMA resist formulations are recommended. Low molecular weights of 35 kDa and 75 kDa guarantee appropriate replication properties. 									

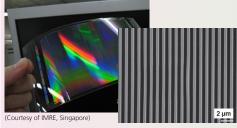
¹ mr-I 7000R and mr-I 8000R are fluoro-modified for improved mold release behavior. Conventional resist formulations mr-I 7000E and mr-I 8000E without fluorinated components are still available in the thickness ranges indicated above.

NIL Material Performance

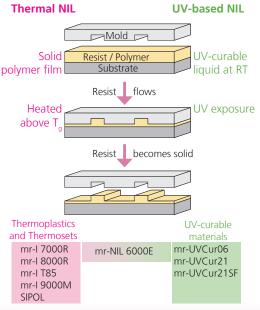
Key Features	Product Series						
Thermal Nanoimprint Lithography							
 Thermoplastics with excellent flow behavior Low imprint pressure High uniformity of the residual layer thickness 	mr-I 7000R						
 Easy demolding, efficient release force reduction^[1] High plasma etch resistance comparable to Novolak-based resists 	mr-l 8000R						
 Nonpolar thermoplastic with high chemical resistance Excellent flow behavior, superior UV/vis transparency High plasma etch resistance 	mr-l T85						
 Excellent polymer flow and easy demolding^[2] Bilayer resist system: SIPOL as etch barrier (Si-containing hard mask) for transfer layer UL1 Significant amplification of imprinted aspect ratios by pattern transfer into the substrate (Fig. 3) 	SIPOL						
 Thermosetting polymer for outstanding pattern stability and for demanding imprint designs No reflow in subsequent process steps with thermal load Mold release at imprint temperature possible (no cooling step) High plasma etch resistance comparable to Novolak-based resists 	mr-l 9000M						
UV Nanoimprint Lithography							
 Vacuum-stable resist films (>10 mbar) Short imprint cycle times: Fast filling of mold cavities due to low viscosity 	mr-UVCur06						
 Low UV doses, fast polymerization rates Pattern resolution down to 10 nm (mr-UVCur21)^[3] Compatibility to different UV exposure systems (Hg, LED) 	mr-UVCur21						
 High uniformity of the residual layer thickness Excellent plasma etch resistance^[3] 	mr-UVCur21SF						
Combined Thermal and UV Nanoimprint Lithography							
 Solid resist film after spin coating Short imprint cycle times due to isothermal NIL process (no cooling step) High uniformity of the residual layer thickness High plasma etch resistance comparable to Novolak-based resists 	mr-NIL 6000E						
 As for all <i>micro resist technology</i> products: Excellent film quality on various substrates Guaranteed product quality and reproducibility Manufacturing according to ISO 9001 and ISO 14001 Safe solvents specified for industrial requirements 	Special Designs and Customized Formulations						

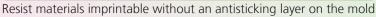
^[1] H Atasoy, M Vogler, T Haatainen, A Schleunitz, D Jarzabek, H Schift, F Reuther, G Gruetzner, Z Rymuza Microel Eng 88 2011 1902
 ^[2] M Messerschmidt, A Schleunitz, C Spreu, T Werner, M Vogler, F Reuther, A Bertz, H Schift, G Grützner Microel Eng 98 2012 107
 ^[3] C Peroz, S Dhuey, M Cornet, M Vogler, D Olynick, S Cabrini Nanotechnol 23 2012 015305

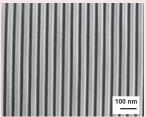
/W. microresist.com


NIL Material Selection Guide

Materials recommended ¹	mr-I 7000R	mr-I 8000R	mr-I T85	mr-I 9000M	SIPOL	mr-UVCur06		mr-UVCur21SF	- 0	mr-NIL 6000E	Special Designs and customized formulations	OrmoStamp ^{® 2}
NIL Process		The	rma	I NIL			U	V-NI	L	Combined thermal and UV-NIL	Various	Transparent working stamp
Etch mask	•	•	•	•	•	•	•			•	•	
Pattern transfer applications												
LEDs, photonic crystals, quantum dots	•	•		•	•	•	•			•	•	
Sub wavelength optical elements (SOE, polarizer)		•		•	•	•	•			•		
Patterned sapphire substrates (PSS)				•	•					•		
Organic electronics (OLED, OPV, OTFT)	•	•		•	•	•	•	•		•	•	
Aspect ratio >> 3					••		•					
Permanent Applications												
Imprintable polymer with optical functionality, DOEs			•						••		•	
Organic electronics (OLED, OPV, OTFT)									•			
Bio applications, lab-on-chip			•						•			
Mold replication												•
Compatibility												
Si and SiO ₂ substrates	•	•	•	•	•	•	•	•	•	•	•	•
Al ₂ O ₃ (sapphire) substrate		•		•	•	•	•	•		•	•	
Plastic substrates				•	•		•	•	•	•	•	•
Inkjet dispensing								•			•	
Roll-to-roll processing	•							•	•		•	


¹ For selected publications about various applications please go to the nanoimprint material section of micro resist technology's webpage www.microresist.com. ² For the hybrid polymers and OrmoStamp® please refer to separate brochures.


Future mrt-innovations coming up soon


UV resist materials for Roll-to-Roll NIL and inkjet dispensing at room temperature on plastic substrates

500 nm lines and trenches of an inkjet dispensed resist imprinted onto polycarbonate plastic, UV-Roll-to-Roll process at room temperature, 395 nm LED exposure, imprint speed 5 m min⁻¹, aspect ratio 3, bare Ni mold **NIL process**

(Courtesy of PSI, Switzerland

15 nm trenches, 50 nm bars imprinted in experimental resist, pattern depth 50 nm, glass substrate coated with primer. Si mold provided by Eulitha AG

(Courtesy of Catalan Institute of Nanotechnology, Spain) R2R imprint on PET foil with

experimental resist