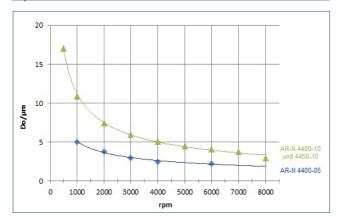


Negative Photoresists AR-N 4400 (CAR 44)

AR-N 4400 photoresist series for high film thickness values

Thick negative resists for electroplating, microsystems technology and LIGA ≤ 20 µm


Characterisation

- i-, g-line, e-beam, X-ray, synchrotron, broadband UV
- chemically enhanced, very good adhesion, electro plating-stable
- very high sensitivity, easy removal
- profiles with high edge steepness for excellent resolution, covering of topologies
- 4400-05/-10 for films up to 10 $\mu m/$ 20 μm (250 rpm)
- 4450-10 for film thicknesses up to 20 µm and lift-off
- novolac, crosslinking agent, amine-based acid generator
- safer solvent PGMEA

Properties I

-			
Parameter / AR-N	4400	4400	4450
	-05	-10	-10
Solids content (%)	33	45	45
Film thickness/1000 rpm (µm)	5	10	10
Resolution (µm)	1.0	2.0	3.5
Contrast	4.0 4.0 10		
Flash point (°C)	42		
Storage 6 month (°C)	10 - 18		

Spin curve

Properties II

Glass transition temperature	102	
Dielectric constant	3.1	
Cauchy coefficients	N ₀ 1.615	
	N_1	77.6
	N_2	64.1
Plasma etching rates (nm/min)	Ar-sputtering	3
(5 Pa, 240-250 V Bias)	02	122
, ,	CF ₄	31
	80 CF ₄	81
	+ 16 O ₂	

Structure resolution

AR-N 4400-10 3 µm resolution at a film thickness of 15 µm

Resist structures

Turbine wheel produced with AR-N 4400-10

Process parameters

Substrate	Si 4" wafer
Tempering	95 °C, 10 min, hot plate
Exposure	Maskaligner MJB 3, contact exposure
Development	AR 300-47, undil., 3 min, 22 °C

Process chemicals

Adhesion promoter	AR 300-80
Developer	AR 300-47
Thinner	AR 300-12
Remover	AR 600-71, AR 600-70

Negative Photoresists AR-N 4400 (CAR 44)

AR-N 4400 photoresist series for high film thickness values

Thick negative resists for electroplating, microsystems technology and LIGA ≥ 50 µm

Properties I

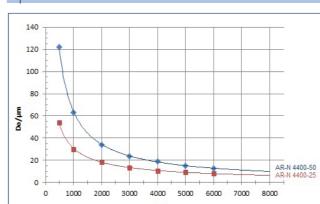
Parameter / AR-N

Solids content (%)

Resolution (µm)

Flash point (°C)

Storage 6 month (°C)


Contrast

Film thickness/1000 rpm (µm)

Characterisation

- i-, g-line, e-beam, X-ray, synchrotron, broadband UV
- chemically enhanced, very good adhesion, electro plating-stable
- very high sensitivity, easy removal
- profiles with high edge steepness for excellent resolution, covering of topologies
- 4400-25 for very thick films up to 50 μm (250 rpm)
- 4400-50 for highest film thicknesses up to 100 μm
- novolac, crosslinking agent, amine-based acid generator
- safer solvent PGMEA

Spin curve

Properties II

Glass transition temperature	102	
Dielectric constant	3.1	
Cauchy coefficients	N ₀ 1.615	
	N _I	77.6
	N_2	64.1
Plasma etching rates (nm/min)	Ar-sputtering	3
(5 Pa, 240-250 V Bias)	02	122
	CF ₄	31
	80 CF ₄	81
	+ 16 02	

4400

-25

52

25

3.5

5.0

42

10 - 18

4400

-50

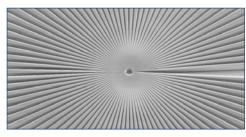
58

50

5.0

6.0

Structure resolution


AR-N 4400-25 5 µm trenches at a film thickness of 40 µm

Process parameters

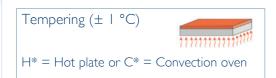
Substrate	Si 4" wafer
Tempering	95 °C, 10 min, hot plate
Exposure	Maskaligner 150
Development	AR 300-44, undil., 90 min, 22 °C

Resist structures

Process chemicals

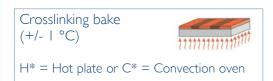
Siemens star produced with AR-N 4400-25 (30 μm thickness)

Adhesion promoter	AR 300-80
Developer	AR 300-46, AR 300-44
Thinner	AR 300-12
Remover	AR 600-71, AR 600-70


Negative Photoresists AR-N 4400 (CAR 44)

Process conditions

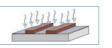
This diagram shows exemplary process steps for AR-N 4400 resists. All specifications are guideline values which have to be adapted to own specific conditions. For further information on processing, " "Detailed instructions for optimum processing of photoresists". For recommendations on waste water treatment and general safety instructions, " "General product information on Allresist photoresists".


4400-05	4400-10 4450-10	4400-25	4400-50
1000 rpm	1000 rpm	1000 rpm	1000 rpm
5 μm	10 µm	25 µm	50 μm

H*	90 °C	90 °C	90 °C	90 °C
	4 min	10 min	45 min	90 min
C*	85 °C	85 °C	85 °C	85 °C
	30 min	60 min	4 h	7 h

Maskaligner, bro	adband UV	
Exposure dose (E ₀ , broadband UV):	
22 mJ/cm ²	26/ 90 mJ/cm ² 33 mJ/cm ²	52 mJ/cm ²

H*	100 °C	100 °C	100 °C	100 °C
	5 min	10 min	10 min	10 min
C*	95 °C 30 min	95 °C 40 min	95 °C 60 min	95 °C 80 min


Development	114114114
(21-23 °C \pm 0,5 °C) puddle	
Rinse	

300-47, 3 : 2	300-47	300-46	300-44		
2 min	4 min	9 min	18 min		
DI-H ₂ O, 30 s and dry with caution					

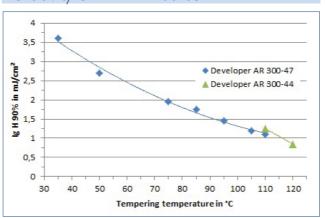
Hardening of structures up to 300 °C (optional)

Flood exposure 100 ml/cm²; bake 120 °C, 5 min hot plate

Customer-specific technologies

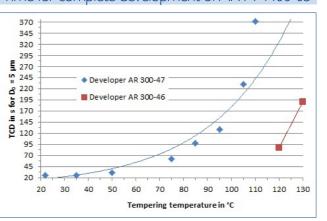
Generation of e.g. semiconductor properties or lift-off (4450-10)

Removal

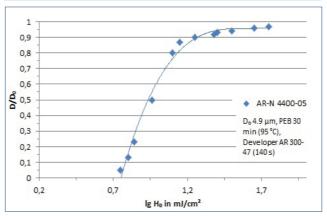

AR 300-76 for low crosslink density, AR 600-71 for high crosslink density, $\rm O_2$ plasma ashing is also possible for high film thicknesses.

Development recommendations

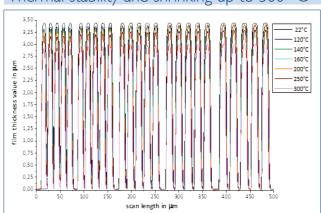
Resist / Developer	AR-N 4400-05 3-10 μm	AR-N 4400-10, 4500-10 5-20 µm	AR-N 4400-25 13-25 μm	AR-N 4400-50 25 - 100 μm		
AR 300-44	-	-	-	8 : I to undil.		
AR 300-46	-	-	5 : I to undil.	undil.		
AR 300-47	6 : I to undil.	3:2 to undil.	undil.	-		
AR 300-475	undil.	-	-	-		


Negative Photoresists AR-N 4400 (CAR 44)

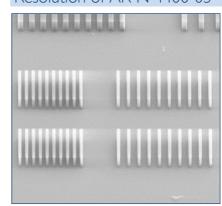
Sensitivity of AR-N 4400-05


The sensitivity increases constantly with increasing bake temperatures (broadband UV Maskeliner, thickness $5.0~\mu m$)

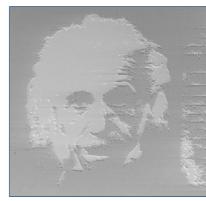
Time for complete development of AR-N 4400-05


With increasing temperature, the TCD increases considerably. > 130 °C, no development is possible even if strong developers (AR 300-44) are used.

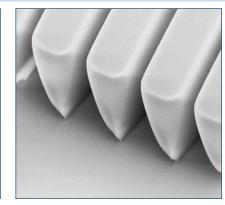
Gradation curve of AR-N 4400-05


The gradation (contrast) is 3.5, the sensitivity was determined to $21.5 \text{ m}/\text{cm}^2$ for a structure buildup of 90 % (H₀90).

Thermal stability and shrinking up to 300 °C


Developed lines with a width of $10-20~\mu m$ were hardened by flood exposure and subsequent bake step. These lines were tempered stepwise until 300 °C. Up to a temperature of 200 °C, structures remain more or less unchanged.

Resolution of AR-N 4400-05


At a film thickness of 5 $\mu m,\ 1.0\ \mu m$ bars were produced

Picture of Albert Einstein

Test structure produced on the occasion of the "Einsteinjahr" in 2006

Lift-off structures

Undercuts produced with low exposure dose (AR-N 4450-10)

Negative Photoresists AR-N 4400 (CAR 44)

Processing instructions for the handing of thick films

Coating: In order to avoid the formation of bubbles, the resist should be left undisturbed for at least one day prior to processing. For resist with higher viscosity from AR-N 4400-25 onwards, degassing with ultrasound or vacuum is advisable.

The resist should be applied slowly, from a low height and always using the same amount of resist (e.g. 100 ml for 4-inch-wafers) onto the standing wafer. Subsequently, a formation for 10 s a low rotational speed (250 - 400 rpm) is recommended, followed by slow increase of the spin speed up to the desired final speed. To achieve a high resist film quality, rotational speeds above 2000 rpm should be avoided for the highly viscous AR-N 4400-50.

ase the film thickness.

thicknesses between 50 and 150 µm. A particularly high edge steepness of structures results in this case from an improved drying procedure. After each coa-°C (convection oven) according to the specifications as given in the process conditions.

Tempering: The required tempering times are highly dependent on the respective film thickness:

Drying times hot plate/convection oven:

10 μm: 10 min/1h; 25 μm: 45 min/4 h; 50 μm: 90 min/7 h. The use of temperature ramps is highly recommended, since too fast cooling may lead to tension cracks.

⋄ Long intensive drying procedures result in decreased sensitivities and prolonged development times.

Crosslinking: The crosslinking temperature can be varied in the range from 85 °C to 105 °C. The bake can be performed a few days after exposure without loss of

 $\ \ \,$ Higher temperaturs lead to a slower development.

Development: longer development times with weaker ~ Shorter coating times at final spin speed will incre- developer provide a higher imaging quality. For AR-N 4450-10, the undercut (lift-off) of resist structures can be Multiple coating steps (up to 4 x) are possible for film achieved by extending the development time at the minimum required exposure dose.

Removal: Crosslinked structures can easily be removed by ting step, the resist is dried at 85 °C (hot plate) or 90 wet- or plasma chemical procedures using removers AR 600-71 and AR 300-76. Complicated electroplating structures as well as substrates treated with high temperatures require removers AR 600-71 or AR 600-70.

Comparison CAR44 and SU-8

CAR 44	Resist properties – Suitability	SU-8
✓	thick films	√ √
✓	high resolution	✓
✓	excellent aspect ratio	✓
✓	high sensitivity at i-line, deep UV, e-beam, X-ray	√ √
✓	good sensitivity at g-line	×
✓	low-stress tempering – easy handling	×
✓	aqueous-alkaline development	×
✓	easy removal	×

