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Recombinant biopharmaceuticals made by 
mammalian cells in stirred (stainless steel) bioreactors
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Ch. 3 How to make a protein
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from inventive concept to market

reality
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Disposable bioreactors (>1 Liter)

• according to the story as told by Dr. V. Singh, the concept for the most 
famous disposable bioreactor, the Wave bioreactor, was developed in 1996. 

The Wave Bioreactor Story

by Vijay Singh Ph.D

The Wave Bioreactor® was conceived in August 1996 on a long Cathay Pacific flight 
from Sydney to New York. .....

(article can be downloaded from the internet via GE healthcare)
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......but there were also a few other people thinking about simplifying and 
streamlining cell culture based manufacturing applying single use bioreactor 
systems 

Girard, P., Wurm, F.M.: Small Scale Bioreactor System for Process development and 
Optimisation. Genetic Engineering News, 19, No 15, P 46..

P. Girard, M. Jordan, M. Tsao, Wurm, F.M. (2001) Small scale bioreactor system for process 
development and optimization. Biochem. Eng. J. 7 (2), pp.117-119.

De Jesus, M., Girard, P., Bourgeois, Baumgartner, M., Jacko, G., Amstutz, H.  and Wurm, F.M. 
(2004) Tubespin satellites: a fast track approach for process development with animal 
cells using shaking technology. Biochemical Engineering Journal 17 (3), pp. 217-223.

Muller, N., Girard, P., Jordan, M. , Wurm, F.M. (2005) :  Orbital shaker technology for the 
cultivation of mammalian cells in suspension. Biotechnol. Bioeng. 89 (4), pp. 400-406.

1999

2001

2004

 2005*

ml scale to liter scale in single use* reactors

* or simple, easy to clean bottles
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Literature on orbitally shaken bioreactors

1. P. Girard, M. Jordan, M. Tsao, Wurm, F.M. (2001) Small scale bioreactor system for process 
development and optimization. Biochem. Eng. J. 7 (2), pp.117-119. 

2. De Jesus, M., Girard, P., Bourgeois, Baumgartner, M., Jacko, G., Amstutz, H.  and Wurm, 
F.M. (2004) Tubespin satellites: a fast track approach for process development with 
animal cells using shaking technology. Biochemical Engineering Journal 17 (3), pp. 217-223.

3. Muller, N., Girard, P., Jordan, M. , Wurm, F.M. (2005) :  Orbital shaker technology for the 
cultivation of mammalian cells in suspension. Biotechnol. Bioeng. 89 (4), pp. 400-406.

4. N. Muller, M. Derouazi, F. Van Tilborgh, S: Wulhfard, D.L. Hacker, M. Jordan and F.M. Wurm, 
(2007) : Scalable transient gene expression in Chinese hamster ovary cells in 
instrumented and non-instrumented cultivation systems, Biotechnol Lett, 29 (5), pp. 703-11

5. Stettler, M., Zhang, X., Hacker, D.L., De Jesus, M., and Wurm, F.M. (2007). Novel orbital 
shake bioreactors for transient production of CHO derived IgGs.. Biotechnol. Prog. 23 (6), 
pp. 1340-1346.

6. Zhang, X., Stettler, M., Reif, O., Kocourek, A., DeJesus, M., Hacker, D.L., and Wurm, F.M. 
(2008). Shaken helical track bioreactors: providing oxygen to high-density cultures of 
mammalian cells at volumes up to 1000 liters by surface aeration with air. New Biotechnol. 
25 (1), pp. 68-75.

7. Zhang, X., Stettler, M, De Sanctis, D., Perrone, M., Parolini, N., Discacciati, M., De Jesus, M. D. 
Hacker, Quarteroni, A., F. Wurm (2008) Use of Orbital Shaken Disposable Bioreactors for 
Mammalian Cell Cultures from the Milliliter-Scale to the 1000-Liter Scale Adv. Biochemical 
Engineering/Biotechnology DOI:10.1007/10_2008_18.

8. Zhang, X., Bürki, C.-A., Stettler, M., De Sanctis, D., Perrone, M., Discacciati, M., Parolini, N., De 
Jesus, M., Hacker, D.L., Quarteroni, A., and Wurm, F.M. (2009). Efficient oxygen transfer by 
surface aeration in shaken cylindrical containers for mammalian cell cultivation at 
volumetric scales up to 1000 L. Biochemical Eng. J. doi: 10.1016/j.bej.2009.02.003

> 1ml

5ml-30 ml

50 ml- 2 L

2 L- 10 L

20 L- 1000 L
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At about the same time... 

s Interfacial tension (N/m)

sND Standard deviation of Gaussian normal drop size distribution (mm)

Y. Suzuki is indebted to the Nordrhein-Westfalen State Ministry of

Science and Research, Germany for a special scholarship. Professor

E. Galindo of Universidad Nacional Autonóma de México, Cuerna-
vaca, Morelos, México has kindly supplied the 500 mL baffled flasks.
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Dr. Chao-Min Liu 
(Distinguished Research Leader, Roche, Nutley)

Cultivation of recombinant 
mammalian cells in shaking 
vessels of 20-36 L working volume 
(vessel volume 50 Liters) 
(Biochemical Engieering Journal 7 (2001) 121-125) 
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Orbitally Shaken Bioreactors for Mammalian Cell Culture

1 L50 mL

20 L       50 L

200 L 2000 L

De Jesus et al., 2004  

Muller et al., 2005  

Stettler et al., 2007  

Stettler,2007

TubeSpin®-bioreactors
(invented by Dr. De Jesus, 2000)
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“fat” TubeSpin®
800 ml

TPP
Trasadingen, Switzerland

TubeSpin®-bioreactors
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What are the benefits of disposable bioreactors? 

• low upfront investment

• fast set-up

• low maintenance

• low cost? (short-term/long-term)

• low(er) human resource use ? 

• low(er) risk in contaminations
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Some disposable bioreactors in the industry (> 10 L)

XDR-2000, Xcellerex (2000L)

BIOSTAT® CultiBag RM, Sartorius-Stedim (50 L)

CellMaker, Cellexus (50L) 11
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XDR-2000, Xcellerex (2000L)

BIOSTAT® CultiBag RM, Sartorius-Stedim (50L)

CellMaker, Cellexus (50L) 12

Stirred Rocking

Bubble column

Disposable bioreactors in the industry

three different mixing systems
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Goals:     Making Bioreactors EASY to use, rapid to set up, run
               and disposable

O2

CO2Nutrients

The two tasks in bioreactors are to provide for: 

Homogeneity: Generating and maintaining it (mix efficiently)

Gas transfer : gas in and out (transfer efficiently

Mixing

Oxygen transfer

13



What is the purpose of any 
(disposable) bioreactor? 

• To provide a cell-friendly environment 
(appropriate cell physiology) for growth 
and high level productivity

14
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Cell-friendly?
• homogeneous environment within the 

entire volume of the reactor that provides

1. temperature (37ºC)
2. O2 supply and maintenance of O2 level within 

desired conc. range
3. physiological pH range
4. low shear stress
5. rapid response to operator-desired changes of     

physico-chemical conditions

15
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Stirred-tanks
• Most commonly used in industry 

• Mixing

• Impeller - shear stress

• Oxygen transfer

• Sparger - foam formation

16

Strengths
+++ Proven applicability from small scale to very large scale!
+++ Scale-up parameters are known

Weakness
- Mixing times can be long, depending on scale
- Oxygen supply by air not sufficient (under low rpms and gas 

flow rates used in mammalian cell culture)
- Foam formation can be a problem (implications for DSP - 

antifoam)
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The strong confidence in stirred tank 
technology drove (after the success of the Wave technology - and the recognition 

of certain limitations)  the rapid emergence of disposable 
stirred tanks...

... so why would anybody invest time and money into 
something different, especially for the very large scale.... ? 
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Shaken, not stirred? 
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Disposable orbitally shaken bioreactors

• Fully scalable technology from a 
few mL                  to 1000 L

• Instrumented or non-instrumented 
bioprocesses

• No sparging (no excessive 
stripping of CO2)

• Aeration through the “free” 
surface

19

2000 Liter Orbshake bioreactor

TubeSpin 
bioreactor

provided bag
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Orbital shaking in time laps video

1 Liter

95 rpm time lapse
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Disposable orbitally shaken bioreactors

• Fully scalable technology from a 
few mL                  to 1000 L

• Instrumented or non-instrumented 
bioprocesses

• No sparging (no excessive 
stripping of CO2)

• Aeration through the “free” 
surface

23

2000 Liter Orbshake bioreactor

TubeSpin 
bioreactorbut would it work? 

let’s find out!!
23



Engineering studies - ExcellGene/EPFL:

• Physical Parameters:

1.Liquid height 

2.Agitation speed (rpm)

3.Shaking diameter

4. Inner diameter of the container

what about combining it with disposable bags? 

•Homogeneity - mixing
Homogeneity in orbitally shaken bioreactor ?

Mixing times

Mixing patterns /simulation

•Gas transfer (O2 supply)
Sufficient for mammalian cell growth ?

Free surface characterization / simulation

Scalability

understand 
and improve 
the two most 
important 
functions
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Key engineering principles

Physical parameters:
1. Liquid height 

2. Agitation speed (rpm)

3. Shaking diameter

4. Inner diameter of the container

25
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3

1

4
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How to measure mixing time: (to obtain homogeneity)

NaOH

pH, DO gradient

tm    mixing time
Cinitial

Cfinal

Tr
ac

er
 c

on
ce

nt
ra

tio
n

Time

26



A side-by-side comparison between orbital shaking 
and stirring: mixing efficiency

27

Orbital shaking Stirring

Container diameter: 13 cm, working volume: 1.5 L

140 rpm 150 rpm

Time to reach final 
state (s)

0

10

20

30
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A side-by-side comparison between orbital shaking 
and stirring: mixing efficiency
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Orbital shaking Stirring

Container diameter: 13 cm, working volume: 1.5 L

140 rpm 150 rpm

Time to reach final 
state (s)

0

10

20

30

16

28
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Liquid height (filling volume of the reactor) does 
not affect mixing times (significantly)

28 cm

26 cm

29
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Agitation rate [rpm]

Mixing time: 

Time needed to reach 
95% homogeneity in the 
bioreactor

17 L
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28 cm

19 cm

26 cm

30

0

40

80

120

160

60 80 100 120 140 160

Mixing time [s]

Agitation rate [rpm]

17 L

12 L Mixing time: 

Time needed to reach 
95% homogeneity in the 
bioreactor

Liquid height (filling volume of the reactor) does 
not affect mixing times (significantly)
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28 cm

19 cm

26 cm

31

10 cm
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40

80
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160

60 80 100 120 140 160

Mixing time [s]

Agitation rate [rpm]

17 L

12 L

6 L

Mixing time: 

Time needed to reach 
95% homogeneity in the 
bioreactor

Liquid height (filling volume of the reactor) does 
not affect mixing times (significantly)
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Mixing times in a 200 Liter OrbShake® bioreactor

                  (bioreactor)

inspired by

disposable bioreactor bag

32



Mixing times in a 200 Liter OrbShake® bioreactor
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Gas (oxygen) Transfer (in and out of the liquid)
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Theoretical batch culture with O2 limitation

Insufficient oxygen supply  due to low 
gas transfer rate limits cell growth

34



Oxygen transfer rate (OTR)
is dependent on the kLa value of the reactor (under conditions for cell culture)

kLa · (csat
L − cL) =

dcL

dt

Mass transfer 
coefficient

Volumetric mass 
transfer coefficient

Driving force

Specific surface of the 
interface

csat
L =

pO2

kH

Henry’s law

︸︷︷︸ ︸︷︷︸

35
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O2 transfer rate 

• Measurement of kLa using 
gassing-in method

• Nitrogen is flushed into the 
system until a dissolved oxygen 
concentration (DO) of 0% air 
saturation is reached

• Air is flushed in the headspace to 
replace nitrogen and the DO is 
recorded

N2
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Air

Liquid 
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dcL

dt
= kLa · (c∗L − cL)
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kLa value decreases as the working volume 
increases
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Working volume (mL)

• 1L round bottle

• 110 rpm
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kLa and maximal cell density (CHO)
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The maximal cell density is correlated to kLa
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Key engineering principles

Physical parameters:
1. Liquid height 

2. Agitation speed (rpm)

3. Shaking diameter

4. Inner diameter of the container
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Shaking speed and gas transfer rates in orbitally 
shaken bioreactors are closely correlated
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Free surface shape

80 rpm 110 rpm
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Fast camera: 250 images/sec.
 Thanks to Dr. Mohamed Farhat, LMH, EPFL
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kLa in our prototype 2000L bioreactor
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kLa in the 2000L bioreactor
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Shear stress? 
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180 rpm - 300 rpm:
up to 30 mio cells/ml cultivated in high seed cultures - no indications of shear stress as determined by viability 
assessment 

Shear Stress in the TubeSpin® - bioreactors 
         - now a widely used system in the industry

Prof. Alfio Quateroni, Dept. 
Mathematics, EPFL

Allinghi, America’s Cup
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What about shear stress? 

Pa

Inner diameter: 1.3 m, agitation rate: 44 rpm, 
shaking diameter: 5 cm, working volume: 690 L
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Shear stress calculation from 
power input measurement

Calculated shear stress is 2 
logs below cell killing value!

0.4 milliPascal!

below 1 milliPascal
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Shear stress: .... but this is only a calculated value

What about Power input?

isn’t this a good number to know in order to assess
the energy distributed (and possibly damaging cells?) 
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Volumetric power input by the 
“thermodynamic method”

Temperature probes

Water

Plastic bag

Stainless steel cylinder

Plastic container

Surroundings

Heating blanket

−Cp
dT

dt
= UA(Tout − T )−Qagitation
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Volumetric power input
−Cp

dT

dt
= UA(Tout − T )−Qagitation
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Volumetric power input
−Cp

dT

dt
= UA(Tout − T )−Qagitation
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Volumetric power input at 100 ml and 
700 Liter scale
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Wave: up to 500 W/m3
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Volumetric power input
... the larger the scale, the smaller the volumetric power 

input? 
Why is that ? 
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Volumetric power input
... lets look where the energy may be absorbed/used

for example at the wall, where the highest friction is 
occurring

500 mL bottle - 100 mL: friction surface:             0.01 m2

S/V ratio:                      about 100 m2/m3

2000L bioreactor - 700 L: friction surface:           3.5 m2                                                       

S/V ratio                          about 5 m2/m3
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Orbital shaking of a 2000 L reactor 
with a working volume of 1000 Liter 

(one metric ton of liquid!)

Electric power consumption: 

< 200 Watts 

(when liquid in synchrony with shaking)
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Key engineering principles

Physical parameters:
1. Liquid height 

2. Agitation speed (rpm)

3. Shaking diameter

4. Inner diameter of the container
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Orbitally shaken 
cylindrical bioreactors

• more efficient for mixing and O2 transfer 
than stirred-tanks under conditions for 
mammalian cell culture

• low shear stress 

Orbitally shaken bioreactors 
appear to be a suitable 
alternative to stirred tanks for 
mammalian cell culture, even at 
the large scale. 
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Thank you: 

• large team of scientists and engineers in my laboratory at EPFL and 
at ExcellGene SA, working over the last 10 years on orbital shaking

• Dr. Xiaowei Zhang

• Dr. Matthieu Stettler

• Stephanie Tissot

• Dr. Maria De Jesus (ExcellGene)

• Dr. Martin Jordan (Merck-Serono)

• Cedric Bürki (ExcellGene)

• Special thanks to the KTI of Switzerland for funding far 3 doctoral 
students

• Dr. M. Farahd (Fluid Dynamics Laboratory of EPFL)

• Prof. Quateroni (Mathematics) and his team for modeling

TPP Techno Plastic Products AG 
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