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ABSTRACT

The tRNA 30-processing endoribonuclease (tRNase Z
or 30 tRNase; EC 3.1.26.11) is an essential enzyme
that removes the 30 trailer from pre-tRNA. The long
form (tRNase ZL) can cleave a target RNA in vitro at
the site directed by an appropriate small-guide RNA
(sgRNA). Here, we investigated whether this sgRNA/
tRNase ZL strategy could be applied to gene therapy
for AIDS. We tested the ability of four sgRNA-expres-
sion plasmids to inhibit HIV-1 gene expression in COS
cells, using a transient-expression assay. The three
sgRNAs guide inhibition of HIV-1 gene expression in
cultured COS cells. Analysis of the HIV-1 mRNA levels
suggested that sgRNA directed the tRNase ZL to med-
iate the degradation of target RNA. The observation that
sgRNA was localized primarily in nuclei suggests that
tRNase ZL cleaves the HIV-1 mRNA when complexed
with sgRNA in this location. We also examined the abil-
ity of two retroviral vectors expressing sgRNA to sup-
press HIV-1 expression in HIV-1-infected Jurkat T cells.
sgRNA-SL4 suppressed HIV-1 expression almost com-
pletely in infected cells for up to 18 days. These results
suggest that the sgRNA/tRNase ZL approach is effec-
tive in downregulating HIV-1 gene expression.

INTRODUCTION

RNA-based gene-interference strategies for the treatment of
HIV-1 infection have often used technology based on

antisense oligonucleotides, ribozymes or double-stranded
interference RNA (RNAi) (1–11). A more recent approach
uses external guide sequences (EGSs) to induce cleavage of
a target mRNA by endogenous RNase P. This strategy is
unique in that cleavage of a specific target mRNA occurs
after hybridization of the EGS to form a structure resembling
a tRNA substrate (12,13). RNA-based EGSs have been
expressed endogenously as transgenes in both bacteria and
mammalian cells (12,14) and have been effective in inhibiting
gene expression by HIV-1 (15,16). We previously designed a
short RNase P-associated EGS to target HIV-1-U5 and eval-
uated its ability to inhibit HIV-1 replication (17). Mammalian
cells contain the essential enzyme, tRNA 30-processing endo-
ribonuclease (tRNase Z or 30-tRNase; EC 3.1.26.11), which
removes 30 trailers from pre-tRNAs (18). The human genome
contains two tRNase Z genes, which encode a 362 amino acid
short form (tRNase ZS) and an 829 amino acid long form
(tRNase ZL) (19,20). Although the C-terminal half of tRNase
ZL has a high level of similarity to the whole of tRNase ZS,
they each require different reaction conditions for optimal
activity (20). Interestingly, the human tRNase ZL gene was
first identified as a candidate prostate cancer-susceptibility
gene (21). Two types of mutation in the human tRNase ZL
gene, an insertion/frameshift and a missense change, segregate
with prostate cancer in two different pedigrees. Furthermore,
two additional common missense mutations seem to be asso-
ciated with prostate cancer. However, a causal association
between the missense mutations and prostate cancer has not
been proven, because these amino acid substitutions do not
alter the enzymatic activities of tRNase ZL (22). The long-
form enzyme is unique in that it can cleave any RNA at any
site when directed by a small-guide RNA (sgRNA) in vitro
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(23–27). tRNase ZL functions in the same way as the
4 nt-recognizing RNA cutter RNase 65, by forming a complex
with a 30-truncated tRNA (23). Partial HIV-1 RNA targets can
be cleaved site specifically by the enzyme, once the targets
form pre-tRNA-like structures with the aid of appropriate
50-half-tRNAs (24). RNA heptamers that form acceptor-
stem-like duplexes with their targets through base pairing
can also direct the specific cleavage of target RNAs by tRNase
ZL in vitro with the same efficiency as the original 50-half-
tRNAs (25,26). However, in this case, the target sites are
restricted to regions immediately downstream of stable hairpin
structures resembling the T stem/loop. Together with such
flexibility in substrate recognition, the ubiquity and constitu-
tive expression of tRNase ZL suggests that this enzyme can be
utilized for specific cleavage of cellular RNAs by introducing
the appropriate sgRNAs into living cells (27).

Recently, we demonstrated the efficacy of this method in
specifically targeting RNA in living cells by introducing
sgRNAs encoded either by expression plasmids or by 20-O-
methyl RNAs (28). The expression of the exogenous reporter
genes for Escherichia coli chloramphenicol acetyltransferase
and firefly luciferase were downregulated for at least 48 h by
appropriately designed sgRNAs in cultured human and dog
cells. A 20-O-methyl heptamer designed to target the endogen-
ous Bcl-2 mRNA was also successful in Sarcoma 180 cells.

In the present study, we investigated whether the sgRNA/
tRNase ZL strategy could also be an effective approach to
gene therapy for AIDS. Several sgRNAs targeted against
HIV-1 mRNA, and expressed by plasmid and retroviral vec-
tors, were tested for their ability to repress its expression. Our
findings confirmed that they were effective in both COS and
Jurkat cells.

MATERIALS AND METHODS

Plasmid construction and retroviral vector
production

Expression cassettes for the sgRNA were constructed under
the control of the human methionine tRNA promoter. The
expressed sgRNA was targeted against either the packaging
signal or the gag portion of the HIV-1NL4-3 strain (Figure 1B).
Enhanced green fluorescent protein (EGFP) is a red-shifted
variant of wild-type GFP (29,30), which has been optimized
for brighter fluorescence and higher expression in mammalian
cells (excitation maximum = 488 nm; emission maximum =
507 nm). A DNA fragment containing EGFP was excised from
the plasmid pLEGFP (Promega, Madison, WI) by digestion
with BamHI–NaeI. The EGFP fragment was ligated to the
EcoRI and XhoI sites of pSV2neo/sgR to generate
pSV2neo/sgRG. The Moloney strain of the murine leukaemia
virus (MoMLV)-based sgRNA pLsgRGSN (Figure 1B) was
constructed by inserting the EcoRI and XhoI fragments from
plasmid pSV2neo/sgRG, along with sgRNAs and EGFP genes,
into the EcoRI and XhoI sites of the retroviral vector
pLXSN (31).

Vesicular stomatitis virus glycoprotein-pseudotyped retro-
virus vector supernatants were generated by transient transfec-
tion of 293T cells, as described previously (32), using 20 mg of
vector plasmid, 10 mg of pMLVDyDenv (33) and 10 mg of
pVSVG envelope plasmid (32,34). Thereafter, supernatants

were collected every 12 h for 3 days, filtered through a 0.45
mm pore-size filter (Nalgene, Rochester, NY) and concentrated
100- to 1000-fold by ultracentrifugation (35,36). Pellets were
resuspended in serum-free DMEM and stored at �80�C until
they were used.

Transduction of target cells

A total of 3 · 105 Jurkat cells per well were plated out in 6-well
plates 1 day before transduction. After 24 h, virus supernatant
was added together with polybrene (final concentration =
5–8 mg/ml) and the cells were incubated at 25�C overnight.
The medium was then replaced with fresh medium containing
G418 (500 mg/ml; GIBCO-BRL, Rockville, MD). After
10 days, cell pools that were resistant to G418 were estab-
lished.

Cells and transfection

COS and Jurkat cells were grown in RPMI 1640 medium
(Sigma, St. Louis, MO) supplemented with 10% (v/v)
heat-inactivated fetal bovine serum (FBS) at 37�C in a
5% CO2 atmosphere. Transfection was carried out using the
FuGENETM6 reagent (Roche Diagnostics, Tokyo, Japan)
according to the manufacturer’s protocol.

Luciferase assay

Luciferase activity was measured with the PicaGene kit
(Toyo-inki, Tokyo, Japan) according to the manufacturer’s
protocol. The envelope-defective HIV-1 NL4-3-based retroviral
vector containing a luciferase-expression marker (pNL4-3-luc)
(32) was generated as follows. The nef gene sequences of the
HIV-1 NL4-3 genome were substituted with the firefly luciferase
gene, and the envelope gene sequences located between two
Bgl II restriction endonuclease sites were deleted (Figure 1B).
The transfection reagent, FuGENETM6, was used to transfect
COS cells with the plasmids expressing sgRNA and pNL4-3-luc.
The COS cells were lysed using 200 ml of PicaGene cell lysis
buffers (Toyo-inki) for 15 min and detached from the plate by
scraping. Cellular debris were then removed by centrifugation.
The luminescent signal was quantitated by adding 10 ml
clarified lysate to 100 ml luminous substrate, and the level of
fluorescence was recorded immediately using a luminometer
(Lumat LB 9507; Berthold, Bad Wildbad, Germany).

The amount of firefly luciferase activity was normalized
with reference to the protein concentration in the lysate.
The protein was quantitated using the BCA Protein Assay
Reagent kit (Pierce, IL), which is based on bicinchoninic acid.

Localization of sgRNA

The cytoplasmic fraction was prepared from collected cells
after washing twice with phosphate-buffered saline (PBS). The
cells were resuspended in digitonin lysis buffer (50 mM
HEPES-KOH, pH 7.5, 50 mM potassium acetate, 8 mM
MgCl2, 2 mM EGTA and 50 mg/ml digitonin) and incubated
on ice for 10 min. The lysate was centrifuged at 1000 g for
5 min and the resultant supernatant was collected and used as
the cytoplasmic fraction. The pellets were resuspended in NP-
40 lysis buffer (20 mM Tris–HCl, pH 7.5, 50 mM KCl, 10 mM
NaCl, 1 mM EDTA and 0.5% NP-40) and incubated on ice for
10 min. The resultant lysate was used as the nuclear fraction.
Cytoplasmic and nuclear RNA were extracted and purified
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from their respective fractions using ISOGEN reagent (Wako,
Osaka, Japan). RNA samples were treated with DNase I
(Takara Shuzo, Shiga, Japan) according to the manufacturer’s
instructions. RT–PCR assays were performed using an RT–
PCR High-Plus kit (Toyobo, Osaka, Japan) according to the
manufacturer’s protocol. The nucleotide sequences of the
sgRNA-SL4 primers were 50-TACTGTGAGACCGTGTGC-
TT-30 (F-primer) and 50-TACTGTGAGACCGTGTGCTT-30

(R-primer). The nucleotide sequences of the U6 primers
were 50-CAGACATGATAAGATACATTGATGAGTT-
TG-30 (F-primer) and 50-CGGGATCCCGGCAATAGCAT-
CACAAATTTC-30 (R-primer).

Cleavage activities of sgRNA in COS cells

COS cells were grown to �80% confluence (3 · 105 cells) and
transfected with 3 mg each of the sgRNA vector and the
pNL4-3-luc plasmid. The cells were incubated for 2 days
before total cellular RNA was isolated. RNA samples were
treated with DNase I according to the manufacturer’s speci-
fications, and RT–PCR assays were carried out as described
above. The levels of cleaved and uncleaved HIV-1 mRNAs
were quantified by RT–PCR with an endogenous internal stand-
ard, GAPDH. A sample of 1 mg of total RNA was used as the

template with the SL3, SL4, p24 and GAPDH primers
(20 pmol each). Reverse transcription in a final reaction
volume of 50 ml was carried out at 60�C for 30 min. The
cDNA products were then amplified by PCR using amplifica-
tion conditions comprising 40 cycles of 94�C for 60 s and 60�C
for 90 s. The SL3-F1 (50-TTGCTGAAGCGCGCACGGCA-30)
and p24-F1 (50-TAAGGCCAGGGGGAAAGAAACAA-
TATAAAC-30) primer pair, and the SL3-R and SL4-R
(50-GTTCTTCTGATCCTGTCTGAAGGGATGGTT-30) and
p24-R (50-GCCCCTGGAGGTTCTGCACTATAGGGTA-
AT-30) primer pair, only generated a cDNA product from
the uncleaved HIV-1 mRNA (RT–PCR products I and III,
SL3 = 310 bp; RT–PCR product V, gag-p24 = 360 bp).
The SL3-F2 (50-TAAATGGGAAAAAATTCGGT-30), SL4-
F2 (50-ATTCGGTTAAGGCCAGGGGG-30) and p24-F2
(50-AGACAAATACTGGGACAGCTACAACCATCC-30)primer
pairs were used to generate cDNA products corresponding to
the cleaved and uncleaved sgRNA sequences, respectively,
thereby identifying both sets of products. The SL3, SL4
and p24 yielded the RT–PCR products II (SL3 = 182 bp),
IV (SL4 = 168 bp) and VI (p24 = 250 bp), whereas the
GAPDH-F and R-primers amplified a fragment of the
GAPDH gene (0.45 kb) as an internal control.

Figure 1. (A) Plausible secondary structures of complexes of the three target sites within the HIV-1 genome [the y site (SL3-stem loop), the SL4-stem-loop site and
gag-24 within the HIV-1 gene] with the modified 50-half-tRNAArg (sgRNA-SL3-1, 2, SL-4 and gag-p24) containing 7 and 5 nt sequences complementary to the target
HIV-1y site and the gag gene. The arrow indicates the tRNase Z cleavage point. (B) Schematic diagrams of the sgRNA-expression plasmids, the retroviral vector and
the HIV-1 luciferase reporter-vector constructs. Methods for the construction of the sgRNA-expression plasmids (pL6-sgRNA-SL3-1, pL6-sgRNA-SL3-2, pL6-
sgRNA-SL4 and pL6-sgRNA-gag-p24) and the retroviral vectors (pLsgRGSN-SL4 and pLsgRGSN-gag-p24) are detailed in Materials and Methods. The envelope-
defective HIV-1 NL4-3-based retroviral vector contained a luciferase-expression marker (pNL4-3-luc). This HIV-1-based vector was generated by substituting the nef
gene sequences of the HIV-1NL4-3 genome with the firefly luciferase gene, and deleting the envelope gene sequences located between two Bgl II restriction
endonuclease sites (32).
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In vitro RNA synthesis

The partial HIV-1 RNA targets (T-SL3-1 and T-gag-p24) and
the sgRNAs (sgRNA-SL3-1 and sgRNA-gag-p24) were
synthesized from the corresponding synthetic DNA templates
with an additional unencoded ’G’ at the 50 end corresponding
to the �1 in a tRNA to enhance its transcriptional efficiency,
using T7 RNA polymerase (Takara Shuzo). The sequences of
the target RNAs and sgRNAs were as follows: 50-GCCAAA-
AAUUUUGACUAGCGGAGGCUAGAAGGAGAGAGAU-
GGGUGC-30 (T-SL3-1); 50-GCAAGCAGGGAGCUAGAA-
CGAUUCGCAGUUAAUCCUGGCCUUUUAGAGACA-30

(T-gag-p24); 50-GUCUCCUUUGGCGCAAUGGAUAACG-
CGAUUUU-30 (sgRNA-SL3-1); and 50-GGGCCAGGU-
GGCGCAAUGGAUAACGCGUCCCUCUACG-30 (sgRNA-
gag-p24). The transcription reactions were carried out under
the conditions recommended by the manufacturer (Takara
Shuzo), and after synthesis the RNAs were purified by dena-
turing gel electrophoresis. The RNA transcripts for T-SL3-1
and T-gag-p24 were subsequently labelled with fluorescein (F)
according to the manufacturer’s protocol (Amersham Pharma-
cia Biotech, NJ). Briefly, after the removal of the 50-phos-
phates of the transcribed RNAs using bacterial alkaline
phosphatase (Takara Shuzo), the RNAs were phosphorylated
with T4 polynucleotide kinase (Takara Shuzo) and ATPgS.
Then, a single fluorescein moiety was appended to the
50-phosphorothioate site. The resulting fluorescein-labelled
RNAs were gel-purified before being used in the assays.

In vitro RNA-cleavage assays

The in vitro RNA-cleavage assays for the fluorescein-labelled
target RNA, T-SL3-1 or T-gag-p24 (0.1 pmol), were per-
formed with pig liver tRNase ZL (20 ng) in the presence of
unlabelled sgRNA-SL3-1 or sgRNA-gag-p24 (5 or 10 pmol) in
a mixture (6 ml) containing 10 mM Tris–HCl (pH 7.5), 1.5 mM
DTT and 10 mM MgCl2 at 50�C for 10 min. After resolution
of the reaction products by electrophoresis through a 10%
polyacrylamide/8 M urea sequencing gel, the gel was analysed
using a Typhoon 9210 (Amersham Pharmacia Biotech).

HIV-1-challenge assay

G418-resitant cell pools were incubated for 4 h with HIV-
1NL4-3 at a multiplicity of infection of 0.01. After two washes
with PBS, the cells were cultured in RPMI 1640 medium
(Sigma) supplemented with 10% (v/v) heat-inactivated FBS.
The supernatant was collected on days 1, 3, 6, 9, 12, 15 and 18
after viral infection, and the culture medium was assayed for
HIV-1 gag-p24 antigen using CLEIA (Lumipulse, Fujirebio,
Tokyo, Japan) according to the manufacturer’s protocol (37).

RESULTS AND DISCUSSION

sgRNAs can inhibit HIV-1 gene expression

We demonstrated in a previous study that antisense phosphor-
othioate oligonucleotides (S-ODNs) complementary to the
gag mRNA (SL4-stem loop), containing the HIV-1 gag
AUG initiation codon, have potent anti-HIV activity in
infected cultured cells. This activity was strong compared
with oligonucleotides targeted to the splice acceptor of the
tat gene and the AUG initiation codon of the rev gene (38).

We have also shown in vitro that mammalian tRNase ZL with
the aid of a 50-half-tRNA-like sgRNA can cleave a partial
HIV-1 mRNA substrate containing the p24 site of the
HIV-1 gag gene (24). Therefore, it would be reasonable to
select the gag AUG site (designated SL4) and the gag-p24 site
to examine the efficacy of the sgRNA method in cultured
cells. The HIV-1 packaging signal (y) that efficiently targets
genomic RNA into nascent virions (39,40) and the y site
(designated SL3) was chosen as an additional target site for
tRNase ZL.

The 50-half-tRNA-type sgRNAs, designated sgRNA-SL3-1
and sgRNA-SL3-2 (extra loop-), were designed to form

Figure 2. Luciferase activity of the pNL4-3-luciferase (pNL4-3-luc) fusion gene
in COS cells. The cells were co-transfected with the target-expressing plasmid
pNL4-3-luc and either the pL6 plasmid encoding the sgRNAs or pL6-ter serving
as a negative control for inhibition using the FuGENETM6 transfection reagent.
The plotted data were averaged from three independent experiments, and the
bars represent –SD.

Figure 3. Intracellular localization of the tRNAi
met–sgRNA. To analyse the

degree of intracellular localization of tRNAi
met–sgRNA, nuclear and

cytoplasmic fractions were prepared from transformants that expressed
sgRNA-SL4 and the total RNA was extracted from each. The transcribed
sgRNA-SL4 was detected using RT–PCR analysis with a primer specific for
the sgRNA. (A) RT–PCR analyses revealed that tRNAi

met–sgRNA-SL4 was
located almost exclusively in the nucleus, as predicted. (B) Nuclear and cyto-
plasmic fractions were examined with a probe specific for the transcript of the
U6 gene (control).
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pre-tRNA-like complexes with SL3. They contained or lacked
an extra loop, respectively (Figure 1A). sgRNA-SL4 without
an extra loop was intended to make a pre-tRNA-like com-
plex with SL4, and sgRNA-gag-p24 with an extra loop was
designed to form a pre-tRNA-like complex with the gag-p24
site (Figure 1A).

The sgRNA-expression plasmids were constructed in the
mammalian expression plasmid pL6 (41,42) and (Figure 1B)
by inserting synthetic DNA sequences between the human
tRNAi

met promoter sequence and the RNA polymerase III
termination-signal sequence. RT–PCR analysis was used to
examine the expression of the sgRNA by these plasmids in
transfected COS cells. A high level of sgRNA was expressed
in the transfected cells, driven by a tRNAi

met promoter (data
not shown).

A transient-expression assay was used to test the ability of
pL6-expressed sgRNA-SL3-1 and 2, sgRNA-SL4 and
sgRNA-gag-p24 to inhibit HIV-1 expression. COS cells

were co-transfected with the sgRNA plasmids and an HIV-
1NL4-3-based vector containing a luciferase-expression maker
(pNL4-3-luc) (31), then suppression of HIV-1 was assessed in a
single-cycle infectivity assay (Figure 2). HIV-1NL4-3-based
luciferase activity was recorded using the control plasmid
vector L6-ter with only the tRNAi

met promoter and terminator
sequences, rather than the sgRNA-expression plasmid. Both
sgRNA-SL3-1 and sgRNA-SL3-2 showed good inhibition of
HIV-1 expression in the cultured cells, suggesting that the
extra loop in the pre-tRNA-like complex is not important
for tRNase ZL recognition (Figure 2). Amazingly, HIV-1
gene expression was almost completely inhibited by
sgRNA-SL4, but only moderately suppressed by sgRNA-
gag-p24. This might be because endogenous tRNase ZL has
difficulty in recognizing the sgRNA-gag-p24/target complex,
possibly due to the lack of a stable ‘T-stem-loop’ structure in
the target, as indicated by the in vitro cleavage assays
described below. These results imply that the sgRNA/tRNase

Figure 4. RT–PCR analyses of HIV-1 mRNA expression. RT–PCR analyses of uncleaved (product I), and total cleaved and uncleaved (product II), HIV-1 mRNA
were performed using HIV-1 gag-specific primers with concurrent amplification of GAPDH mRNA. (A) Schematic representation of HIV-1-specific primer sites
with respect to HIV-1 mRNA: F1 primers, SL3 and p24; F2 primers, SL3, SL4 and p24; R-primers, SL3, SL4 and p24. (B) RT–PCR amplification products analysed
by 2% agarose gel electrophoresis with ethidium bromide staining.
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ZL strategy is effective in reducing the level of the HIV-1 gene
expression, although the efficiency of inhibition differs
according to the sgRNAs used.

Intracellular localization of the tRNAi
met–sgRNA

Co-localization of sgRNAs, their RNA targets and tRNase ZL
is important for efficient downregulation; therefore, we exam-
ined the intracellular location of sgRNA-SL4 (41,42). Trans-
formed cells expressing sgRNA-SL4 were separated into
nuclear and cytoplasmic fractions, and the total RNA was
extracted from each. sgRNA-SL4 was detected using RT–
PCR analysis with a primer specific for the sgRNA. This
revealed that they were located almost exclusively in the
nucleus (80%) (Figure 3).

The inhibitory effect of sgRNA occurs through target
RNA degradation by tRNase ZL

The contribution of HIV-1 mRNA cleavage to the sgRNA-
mediated anti-HIV-1 effect was examined by measuring HIV-1
mRNA levels (43,44). Two sets of RT–PCR reactions were
used to establish the level of HIV-1 mRNA uncleaved at the
target site by tRNase ZL [products I (310 bp), III (310 bp) and
V (360 bp)], and the total amount of HIV-1 mRNA at the target
site [products II (182 bp), IV (169 bp) and VI (250 bp)], i.e.
both cleaved and uncleaved. The uncleaved HIV-1 mRNA was
amplified by primers SL3-F1 and gag-p24-F1, and the SL3-R,
SL4-R and gag-p24-R primers (Figure 4A). The levels of
products I, III and V were expected to decrease after cleavage
of the HIV-1 mRNA. The levels of products II, IV and VI
reflected the total amount of HIV-1 mRNA (cleaved and

Figure 5. sgRNA guided specific HIV-1 mRNA cleavage by in vitro tRNase ZL assays. (A) Secondary structures of the substrate-HIV-1 SL3-1 (extra loop) and gag-
24 complexes with sgRNA-SL3-1 and sgRNA-gag-p24. (B) The assays for the fluorescein (F)-labelled target RNA T-SL3-1 or T-gag-p24 (0.1 pmol) were performed
with pig liver tRNase ZL (20 ng) in the presence of the unlabelled sgRNA-SL3-1 or sgRNA-gag-p24 (5 or 10 pmol) at 50�C for 10 min. The cleavage reactions were
analysed using a 10% polyacrylamide/8 M urea sequencing gel. The target RNA and the primary 50-cleavage product are indicated by a bar and arrow, respectively,
together with their size in nucleotides. L denotes the alkaline ladder of each fluorescein-labelled target RNA.
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uncleaved SL3, SL4 and gag-p24), as the 30 fragment of
cleaved HIV-1 mRNA remained a viable template for ampli-
fication in this PCR. The results, which are shown in Figure 4B,
indicate that the sgRNA-SL3-1- and SL4-dependent expres-
sion system reduced the amount of HIV-1 mRNA [products I
(92%) and IV (97%)], whereas transfection with pNL4-3-luc/
sgRNA-gag-p24 did not significantly alter uncleaved HIV-1
mRNA expression in COS cells (Figure 4B). These data are
consistent with the results of the luciferase assays and suggest
that the inhibitory effect of sgRNA is achieved through target
RNA degradation by tRNase ZL.

sgRNA-gag-p24 barely directs in vitro HIV-1 RNA
cleavage by tRNase ZL

sgRNA-gag-p24 was much less effective than the other
sgRNAs in suppressing HIV-1 gene expression in cells. We
examined the reason for this by assessing its ability to guide
HIV-1 RNA cleavage by tRNase ZL in vitro. The partial HIV-1
RNAs T-SL3-1 and T-gag-p24 containing SL3 and the gag
p24 site, respectively, were synthesized in vitro with T7 RNA
polymerase and 50 end-labelled with fluorescein. sgRNA-
SL3-1 and sgRNA-gag-p24 were also transcribed by T7
RNA polymerase in vitro. The ability of each sgRNA to induce
cleavage of the corresponding target RNA by tRNase ZL was
tested in vitro. The target T-SL3-1 was cleaved efficiently
under the direction of sgRNA-SL3-1, whereas cleavage of
the target T-gag-p24 by sgRNA-gag-p24 was highly ineffi-
cient (Figure 5), this was in agreement with the in vivo
observations. Cleavage of each target occurred primarily
1 nt downstream of the nucleotide corresponding to the dis-
criminator (Figure 5). These results indicate that sgRNA
bound to its target HIV-1 mRNA, and cleavage of the pre-
tRNA complexes with tRNase ZL occurred. It was therefore
important to determine the localization of both the sgRNA and
its target HIV-1 in the cells. The reduction in functional HIV-1
mRNA was consistent with tRNase ZL cleavage occurring at
the post-transcriptional level.

Inhibition of HIV-1 gene expression by retroviral
vector-mediated sgRNAs in human T cells

The inhibitory effect of HIV-1 expression by tRNase
ZL-mediated sgRNAs was investigated in human T cells by
constructing a MoMLV-based sgRNA retroviral vector. Most
retroviral vectors used in experimental and clinical gene ther-
apy are derived from the MoMLV (45). Retroviruses integrate
into the chromosomal DNA, so their genome is stable in the
host cells and is inherited by their progeny. Accordingly, long-
term expression of a transduced gene can be achieved through
retrovirus-mediated gene transfer. Other advantages of this
vector include its broad host range and the availability of
packaging cell lines for the large-scale production of high-
titre vectors. It has previously been shown that an amphotropic
MoMLV-based retrovirus vector can transduce a human T-cell
line (46). We therefore expressed the sgRNA under the control
of the promoter of a human tRNAi

met gene via a retroviral
vector (Figure 1B). The plasmid pLsgRGSN (Figure 1B) was
constructed by inserting the following elements into the EcoRI
and XhoI sites of the retroviral vector pLXSN: an EcoRI and
XhoI fragment from the plasmid pSV2neo/sgRG, sgRNAs and
EGFP genes. We then obtained transduced Jurkat T cells

stably expressing the sgRNAs. These Jurkat T cells were
infected with wild-type HIV-1NL4-3, and HIV-1gag-p24 anti-
gen levels in the cell-free supernatant were measured at
weekly intervals over 18 days. By day 18, the HIV-1 gag-
p24 product was suppressed almost completely (�97%) in the
cell cultures expressing sgRNA-SL4 (Figure 6). In contrast,
sgRNA-gag-p24 and sgRNA-SL4 failed to inhibit viral
expression under these experimental conditions. The differ-
ence between the effects of sgRNA-SL4 and sgRNA-gag-p24
in the HIV-1-challenged assay was due to the lack of base
pairing in the hairpin structure resembling the T-stem-loop
region.

In conclusion, we demonstrated the inhibition of HIV-1
gene products in cultured cells by inducing HIV-1 mRNA
cleavage using a modified 50-half-tRNAArg (sgRNA) and
mammalian tRNase ZL. The sgRNA/target HIV-1RNA com-
plex formed a pre-tRNA-like structure with 50-half-tRNA and
a stable hairpin (30-half-tRNA) structure resembling the
T-stem-loop region. The tRNAi

met–sgRNA transcript was
expressed at high levels and localized in the nucleus. The
greatest inhibitory effect on HIV-1 expression was achieved
using sgRNA-SL4 targeting the HIV-1 gag gene. These results
suggest that both sgRNA and its target HIV-1 mRNA were
located in the nucleus, allowing specific cleavage by tRNase
ZL. Furthermore, MoMLV-based sgRNA-SL4 could suppress
sgRNA-dependent HIV-1 expression in human T cells. We
believe that the use of mammalian tRNase ZL in conjunction
with guide sequences represents a promising tool for the
inactivation of genes in mammalian cells. Furthermore, the
inhibition of HIV-1 using this approach demonstrates its
potential as a therapeutic agent for AIDS.
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